Invariant-geometry conditions for the rational bi-quadratic Bézier surfaces

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Invariant-geometry conditions for the rational bi-quadratic Bézier surfaces

A generalization of Patterson’s work (Patterson, 1985), on the invariants of the rational Bézier curves, to the case of surfaces is presented. An equation for the determination of the invariants for surfaces of degree (n, n) is derived and solved for the bi-quadratics – for which it is shown that seven independent, invariant functions exist. Explicit forms of the invariants are derived and a nu...

متن کامل

Convolution surfaces of quadratic triangular Bézier surfaces

In the present paper we prove that the polynomial quadratic triangular Bézier surfaces are LN-surfaces. We demonstrate how to reparameterize the surfaces such that the normals obtain linear coordinate functions. The close relation to quadratic Cremona transformations is elucidated. These reparameterizations can be effectively used for the computation of convolution surfaces.

متن کامل

Using Farin points for rational Bézier surfaces

Farin points (weight points) are a useful tool for handling the weights of rational Bézier curves. They describe the weights of the Bézier points uniquely and in a geometrically intuitive way. The main problem for using Farin points for triangular or tensorproduct rational Bézier surfaces is the fact that they are not independent of each other and therefore overdefine the weights. To overcome t...

متن کامل

On derivative bounds for the rational quadratic Bézier paths

New derivative bounds for the rational quadratic Bézier paths are obtained, both for particular weight vectors and for classes of equivalent parametrisations. A comprehensive analysis of our bounds against existing bounds is made.

متن کامل

The Rational Quadratic Trigonometric Bézier Curve with Two Shape Parameters

A rational quadratic trigonometric Bézier curve with two shape parameters, which is analogous to cubic Bézier curve, is presented in this paper. The shape of the curve can be adjusted as desired, by simply altering the value of shape parameters, without changing the control polygon. The rational quadratic trigonometric Bézier curve can be made close to the rational cubic Bézier curve or closer ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computer Aided Geometric Design

سال: 2009

ISSN: 0167-8396

DOI: 10.1016/j.cagd.2009.06.004